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Abstract
The active regulation of cellular forces during cell adhesion plays an important role in the
determination of cell size, shape, and internal structure. While on flat, homogeneous and
isotropic substrates some cells spread isotropically, others spread anisotropically and assume
elongated structures. In addition, in their native environment as well as in vitro experiments, the
cell shape and spreading asymmetry can be modulated by the local distribution of adhesive
molecules and topography of the environment. We present a simple elastic model and
experiments on stem cells to explain the variation of cell size with the matrix rigidity. In
addition, we predict the experimental consequences of two mechanisms of acto-myosin
polarization and focus here on the effect of the cell spreading asymmetry on the regulation of
the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently
asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the
matrix rigidity; however, in general this alignment is non-monotonic, as shown previously.
These results highlight the importance of the symmetry characteristics of cell spreading in the
regulation of cytoskeleton structure and suggest a mechanism by which different cell types may
acquire different morphologies and internal structures in different mechanical environments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent experiments have demonstrated that geometrical and
mechanical properties such as the cell shape and the elastic
rigidity of the environment play an essential role in the
regulation of cellular processes including, cell proliferation,
differentiation and apoptosis [1–9]. Interestingly, even when
plated on isotropic and homogeneous substrates, human
mesenchymal stem cells were shown to adopt distinct
morphologies when the rigidity of these substrates was
different [6]. In particular, on either very soft or very rigid
substrates, the cells adopted more isotropic morphologies,

while on substrates with intermediate rigidities, the cells
adopted polarized (elongated) structures. Another typical
observation is that the spread area of cells increases
monotonically with the rigidity of the environment [3, 4, 10].
The fact that the size and shape of spreading cells depends on
the rigidity of the environment suggests that these properties
may be determined by a mechanical balance of forces
resulting from the elastic deformation of both the cell and its
environment.

Indeed, cell adhesion is accompanied by the generation
of isometric tension in the cytoskeleton [11–13]. This
tension is created by various mechanisms (that operate
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simultaneously) including the active polymerization of the
actin network that pushes the cell front during cell spreading
and the concurrent acto-myosin forces that locally compress
the cytoskeleton [14, 15]. The rigidity of the cell and the
surroundings, as well as the cell shape, play an essential
role in the determination of the elastic stress and strain
and the force balance in the cytoskeleton. In general, a
more rigid external matrix can support more tension in the
cytoskeleton, suggesting that cells may possess more stretched
configurations in more rigid environments, as observed in
experiments [3, 4, 10]. Somewhat less intuitive is the effect
of the shape and spreading symmetry of cells on the balance
of forces and its effect on the internal structure of the
cytoskeleton; this is the subject matter of the present paper.

The isometric tension developed during cell adhesion does
not reach a steady-state when the cell is fully spread on the
surface. Rather, experiments show that on a timescale of
tens of minutes to hours, the cell continues to remodel its
cytoskeleton to establish a distribution of acto-myosin fibers,
called stress-fibers, that span the cytoskeleton and terminate
at localized protein complexes called focal adhesions [16].
The number of stress-fibers formed and their orientational
distribution in the cell is likely to depend on the magnitude
and symmetry characteristics of the elastic stress in the
cell [17–20]. We have recently shown, both theoretically and
experimentally, that an early-time anisotropy in the shape of
a cell may direct the spontaneous alignment of the stress-
fibers along the long axis of the cell, even if the forces
exerted by the cell are isotropic; we have also demonstrated
that the stress-fiber alignment caused by this mechanism
depends non-monotonically on the matrix rigidity [20]. While
recent evidence indicates that isolated cells plated on flat,
homogeneous and isotropic surfaces spread isotropically on
a surface [14], cell spreading does not always occur in an
isotropic environment. In both the native environment, and in
vitro experiments, cells often spread in anisotropic geometries.
For example, this can occur when a cell spreads on a thick but
long collagen fiber in the extracellular matrix (a phenomenon
known as contact guidance [21, 22]) or when the cell shape
and spreading are artificially manipulated by the topography
of the substrate or the distribution of adhesive ligands on the
surface [17, 18, 23, 24]. The anisotropy of cell spreading in
these situations affects the elastic stress in the cytoskeleton
and may therefore govern the polarization of stress-fibers in
the cell.

In this paper, we study both theoretically and experimen-
tally, the elastic consequences of cell spreading that dictate the
dependence of cell size on the rigidity of the surroundings and
the regulation of stress-fiber polarity in the cell. We present
a simple elastic model that predicts the variation of cell size
(area) with the matrix rigidity and experiments on stem cells
that support our model. In addition, we study the effects of the
adhesion-induced stress on the polarization of stress-fibers in
the cell. While the complete dynamics of cell spreading is not
considered here, we do focus on the symmetry characteristics
of the elastic forces that the cell exerts during cell adhesion
and predict how these forces feed back on the regulation of
the stress-fiber orientation in the cell. We model the cell as

Figure 1. Schematic illustration of cell spreading symmetry. The
blank and shaded domains show a top view over the cell shape before
and after cell spreading, respectively; small arrows indicate the
direction of the consequent elastic, restoring forces. On the left we
illustrate a cell whose early-time shape on the substrate is slightly
anisotropic but its spreading is isotropic. In this case, as explained in
the text, the stress in the cell need not be isotropic due to the
early-time shape of the cell, and as a consequence, we predict that
the stress-fibers polarize spontaneously parallel to the long axis of
the cell. Our calculations show that dependence of this alignment on
the matrix rigidity is non-monotonic. In contrast, we find that the
polarization resulting in the case of anisotropic cell spreading, as
illustrated in the right panel, increases monotonically with the matrix
rigidity, in response to the increasing stress anisotropy.

an active elastic inclusion that pulls on its surroundings and
generates an elastic stress in both the cell and its environment;
the surroundings are treated as an infinite isotropic and homo-
geneous elastic medium and we consider both 2D and 3D ge-
ometries. The model includes both the elastic forces resulting
from cell spreading as well as the contractile forces originating
from myosin motors in the cytoskeleton. We use approaches
from continuum mechanics to quantify the elastic stress cre-
ated by these forces, for different cell shapes, for different lev-
els of spreading asymmetry and for different rigidities of the
environment. We then couple the changes in the elastic stress
in the cell to the initial, active modulation of the acto-myosin
forces in the cell (both in magnitude and orientation) that is
likely to be an important first step in the global orientation and
polarization of stress-fibers in the cell.

Our model allows us to distinguish two fundamentally
different mechanisms that drive the polarization of stress-fibers
in cells, see figure 1. One mechanism, which is the focus of
the present work, results from the anisotropy of elastic stresses
within the cell that can arise from asymmetric cell spreading;
for brevity, we shall call this the asymmetry that arises from
cell spreading. This can occur even for symmetrically shaped
cells if the surface properties that govern cell spreading are
anisotropic. The other mechanism, treated in [20], arises from
the early-time anisotropy of the cell shape. We showed in [20]
that even if a cell spreads isotropically on a substrate the elastic
stress produced by the cell can be anisotropic if the cell shape
is already anisotropic at early times. Thus, both the early-
time shape of the cell and the anisotropy of cell spreading
may result in an anisotropic stress in the cytoskeleton, that
in turn, may govern the orientation of stress-fibers in the cell.
However, while the stress-fiber polarization resulting from the
anisotropy of the cell shape depends non-monotonically on the
matrix rigidity, the polarization resulting from the anisotropy
of cell spreading increases monotonically with the matrix
rigidity. This distinction leads us to suggest that different
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cell types with different spreading characteristics can show
qualitatively different behaviors of stress-fiber polarization in
different mechanical environments.

2. Theoretical model

The anchoring of a cell to the extracellular matrix as well as
the active spreading of cells on a surface involve a shape and
volume deformation of the cell that produces elastic stresses
in both the cell and the matrix [11–13, 25]. A similar effect
occurs in a solid when some part of it, an elastic inclusion,
undergoes a shape or volume transformation, due to a phase
transition, thermal expansion, or other chemical change and
thereby produces a stress field in both the solid and the
inclusion [26]. The theory presented here shows how the
rigidity of the environment and its coupling to the symmetry
of cell spreading, dictate the elastic stress in the cell, that in
turn, feeds back on the acto-myosin forces in the cell and
governs their density and orientation. We consider a sparse
distribution of cells and focus on the elastic interaction of an
isolated cell with its surrounding matrix. To calculate the
elastic stress produced by an active cell we use approaches
from solid mechanics and generalize the well-known inclusion
problem [26, 27] to include the ‘live’ nature of the cell, that
is, its ability to actively regulate its forces. Our theory is
applicable for both 2D and 3D systems; for clarity we focus
first on a 3D system that is applicable to cells in tissues. The
formalism we use here is similar to that used in [20] but for
clarity we review it here in detail and focus on the change in
cell area and on the effects of spreading asymmetry.

We focus on the early stages of cell adhesion where
the actin cytoskeleton is still in the isotropic gel state, the
myosin motors are dispersed in the cell and both have not
yet assembled in organized, anisotropic stress-fibers. Thus,
for simplicity, the cell and surrounding matrix are each
modeled as a continuum, isotropic (linear) elastic medium
and are respectively characterized by the (fourth-rank) elastic
moduli tensors Cc and Cm.7 We use bold face letters to
designate fourth-rank tensors and a product of the form Agi j to
denote Ai jkl gkl , and similarly ABgi j = Ai jmn Bmnkl gkl , where
summation over repeated indices is implied (in the 2D model
the summation is restricted to the x–z plane).

Experiments show that the spreading area of cells
increases monotonically with the matrix rigidity reaching
maximal values when placed on rigid substrates such as plastic
or glass coverslips [3, 4]; similarly in a 3D collagen gel cells
were shown to assume larger sizes when the gel was fixed to
the culture dish than when it was floating in solution [10]. This
leads us to suggest that the dependence of the cell size on the
rigidity of the environment is dictated by an elastic balance
of forces between the cell and the matrix. To calculate this
dependence we first focus on the maximally stretched state of
the cell as it exists when the cell is fully spread and anchored to
an infinitely rigid matrix. We define the state in which the cell
is fully stretched, but where the matrix is in its equilibrium,

7 This neglects non-linear and anisotropic elastic effects that become more
important as the force exerted by the cell increases and prominent stress-fibers
fill the cytoskeleton [48–50].

(as yet) undeformed, state as the state of zero displacement.
This provides the reference state from which all strains defined
hereafter are measured [26, 27]. If now the cell is removed
from the matrix and placed in solution, it undergoes the free
transformation strain, u0

i j < 0, and reverts back to its original,
elastically undeformed and more compact size. Conversely,
−u0

i j > 0, is the strain associated with the anchoring and
spreading of the (initially undeformed) cell in an infinitely rigid
matrix. Thus, in its fully stretched state the cell exerts inward
restoring forces Ccu0

i j n j that tend to contract the cell; n̂ is the
unit vector that denotes the outward normal to the cell surface.
We now consider the more general case where the cell spreads
and anchors to an elastic matrix with finite rigidity.

After some initial spreading of the cell, adhesion of the
cell and matrix develops—this couples the cell and the matrix
elastically; once this happens, the actively generated tension
in the cytoskeleton, that (at least) in part originates from the
early-time isotropic pulling forces of myosin motors, deforms
the matrix. To calculate how these effects dictate the elastic
state of the cell in matrices of different rigidities, we assume
that the cell first (actively) stretches to its maximum size, as
it would in a rigid environment that cannot deform, and then
calculate the actual strain that develops in the cell, uc,0

i j , once
the forces are allowed to relax in both the cell and the matrix.
To calculate the equilibrium strain uc,0

i j , and stress, σ
c,0
i j , in the

cell, we follow the usual treatment of inclusions in solids. To
simplify the calculation we model the cell as an ellipsoidal,
homogeneous and isotropic, inclusion in an infinite 3D matrix.
In this case, an important simplification applies: the strain
distribution within the inclusion is uniform [26, 27]. For the
simple case that Cm = Cc we have: uc,0

i j = Su0
i j , where S is

the well-known Eshelby tensor that is calculated for models of
passive, elastic inclusions. This tensor is a known function of
the inclusion shape and the Poisson ratio of the matrix [26, 27].
For the more general case where the cell and the medium have
different elastic properties one denotes S by Sm and generalizes
the original Eshelby result to give [26, 28, 29]:

uc,0
i j − u0

i j = A(Sm − I)u0
i j, (1)

with A = [I + Sm(Cc − Cm)C−1
m ]−1. Here, I, denotes the

fourth-rank identity tensor Ii jkl = 1
2 (δikδ jl + δilδ jk); the

subscript in Sm implies that the Eshelby tensor is a function
of the Poisson ratio of the matrix; the fourth-rank tensor, A,
is often termed the strain-concentration tensor [28, 30]. Since
(by definition) u0

i j and uc,0
i j are measured relative to the state

where the cell is fully stretched (and where the matrix is
undeformed), and since u0

i j is the free transformation of the

cell to its undeformed state, the difference, uc,0
i j −u0

i j , measures
the cellular deformation relative to the undeformed state of the
cell; thus σ

c,0
i j = Cc(u

c,0
i j − u0

i j) is the elastic stress in the cell.
We now propose that this initial elastic state of the cell

provides a mechanical cue that directs the development and
alignment of stress-fibers in the cell. The active forces that
act on the cell surface arise from a distribution of equal
and opposite forces within the cell volume that are locally
exerted on the actin fibers by myosin. These elastic, ‘force
dipoles’ [31–33] each occupy a very small volume on the scale
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of the cell and we assume that the cell contains a uniform
distribution of these dipoles. The elastic dipoles are tensor
quantities that have units of energy since the dipole magnitude
is given by the product of the force exerted and the distance
between the two points (related to the size of the myosin
molecule), that produce the equal and opposite forces. One
index of this tensor signifies the direction of the force and the
other index signifies the direction of the vector that represents
the two points at which the myosin exerts its forces along the
stress-fiber [32]. We define the average dipole per unit volume,
〈pi j〉, (equivalent to a force per unit area) exerted by the acto-
myosin elastic, dipolar forces in any volume element within the
cell. We assume that these force dipoles polarize in response
to the local stress in the cell, and thus change their magnitude
and orientation compared with their average initial value 〈p0

i j〉.
We thus propose a feedback response of the form:

〈pa
i j〉 = −αCc(u

c
i j − u0

i j), (2)

where 〈pa
i j〉 = 〈pi j〉 − 〈p0

i j〉 is the polarization tensor. The
tensor α determines the response of the cell to the mean
cytoskeleton stress, given by: σ c

i j = Cc(uc
i j − u0

i j). The
cytoskeleton stress, σ c

i j is the steady-state stress that is a result
of both: (i) the matrix forces that act on the cell and (ii) the
polarization of the acto-myosin forces in the cell that develop
after the initial cell adhesion. It must thus be calculated in
a self-consistent manner. The tensor α is termed the cell
polarizability tensor, because it determines the extent of cell
polarization in response to strains within the cell that arise
from forces external to the cell, in our case, due to the matrix
elasticity. In general, α is a fourth-rank tensor whose elements
may be cell-type specific. We argue below that since the
polarization response begins when the cytoskeleton is still in
an isotropic gel state [34, 35] the polarizability tensor, α, can
be approximated by an isotropic tensor that is characterized
by two independent parameters αv and αs , corresponding
respectively, to global, volume and shape (shear) deformations
of the cell. In the results section we discuss the elastic
polarizability tensor in more detail.

In the cell, both the active forces (per unit volume) due
to acto-myosin activity, f a

i = 〈pa
i j〉n j , and the passive elastic

forces (per unit volume), f c
i = Ccuc

i j n j , are linearly related
to the strain in the cytoskeleton, we can thus define a set of
effective material quantities that combine the passive and active
cell response. To do this, we note that for an ellipsoidal cell,
the elastic field and consequently the polarization 〈pa

i j〉 are
uniform. This allows us to write the force balance equation
at the cell/matrix interface: (Cc(uc

i j − u0
i j) − Cmum

i j)n j =
f a
i ; where f a

i = 〈pa
i j〉n j are the (surface) polarization

forces analogous to the so-called polarization charges in
electrostatics [36]. By use of equation (2) and the relationship
between the active force and the dipole strength, f a

i = 〈pa
i j〉n j ,

we may rewrite this boundary condition as follows:

C̃c(uc
i j − u0

i j)n j = Cmum
i j n j (3)

with
C̃c = (I + α)Cc. (4)

For comparison, immediately after cell adhesion, when the
long-term, active polarization response of the cell has not
yet been established, there are no feedback effects; this is
equivalent to setting α = 0 in equation (4). In this early-
time regime, the boundary conditions that relate the matrix
and cell stresses at the cell boundary are those of passive
inclusions in an elastic matrix: Cc(u

c,0
i j − u0

i j)n j = Cmum,0
i j n j .

Thus, the effective elastic moduli, C̃c, renormalize the passive
moduli, Cc, of the cell to include the active (linear) polarization
response of the force dipoles.

We are now in position to write formal expressions for the
mean strain in the cell, uc

i j , that drives the reorganization of the
stress-fibers and focal adhesions, as well as for the increase in
the mean value of the local, elastic force dipole per unit volume
(force per unit area) that are produced by active cells in 3D
matrices. Making use of equations (1)–(2), and replacing Cc

by the effective moduli C̃c we obtain:

uc
i j − u0

i j = Ã(Sm − I)u0
i j , (5)

with Ã = [I + Sm(C̃c − Cm)C−1
m ]−1. This allows us to

calculate the mean cellular dipole via the feedback relation of
equation (2), and we find:

〈pa
i j〉 = −αCcÃ(Sm − I)u0

i j . (6)

This equation predicts how the early-time polarization of
the acto-myosin dipoles in the cytoskeleton is governed by the
cell shape (via the Eshelby tensor S), and the elastic moduli
of the cell and the matrix. On the right hand side, u0

i j , is
the early-time strain that results from cell spreading and from
the compressional forces exerted by the isotropic distribution
of myosin motors in the cytoskeleton. In the results section
we shall discuss the symmetry characteristics of u0

i j and the
properties of the polarizability tensor, α, and demonstrate how
these affect the polarization of stress-fiber in the cell.

The formalism presented above is also applicable to an
active, elliptical cell embedded in an infinite 2D sheet of matrix
under conditions of generalized plane-stress [37]. This is
defined in a geometry in which the cell and the matrix are
in the x–z plane, with zero stress boundary conditions in the
perpendicular direction: σyy = σxy = σzy = 0. Thus while the
problem is two-dimensional the cell is free to deform in and out
of the x–z plane. As in the 3D case, the elastic field in the cell
is uniform and equations (1)–(6) hold but with a 2D version
of the Eshelby tensor, which is a known function of the cell
shape and matrix Poisson ratio [38]. This allows us to solve the
problem analytically and to compare the polarization response
of cells in two- and three-dimensions. The 2D, plane-stress
model applies to substrates whose thickness is smaller than the
cell size. The experimental situation is therefore intermediate
between our 2D and 3D calculations. However, as shown
in [20] we find the same, generic, qualitative dependence of
the acto-myosin polarization on the matrix rigidity in both 2D
and 3D.
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3. Results and discussion

3.1. The spreading area of cells and its dependence on the
matrix rigidity

Perhaps the clearest indication that the elastic tension in the cell
governs its geometry is the well-known observation that the
area of cells that spread on a surface depends on, and generally
increases with the rigidity of the environment [3, 4, 10]. Our
model allows us to estimate how the cell area (in 2D) or volume
(in 3D) vary with the matrix rigidity. This estimate is based on
the assumption that the variation of cell size with the matrix
rigidity is dictated by the elastic balance between the cell and
matrix forces. We denote by u0 and uc the respective traces
of u0

i j and uc
i j . Noting that in 3D, u0 ≈ (VR − V0)/V0, and

uc ≈ (Vc − V0)/V0, where VR is the cell volume in its relaxed
state, V0 is the cell volume in its fully stretched state, as it
exists in an infinitely rigid matrix, and Vc is its equilibrium
size in a compliant matrix, we have (Vc − VR)/(V0 − VR) ≈
(uc − u0)/(−u0). Similarly, in 2D we find an expression for
the change in the cellular area, (Ac − AR)/(A0 − AR) ≈
(uc − u0)/(−u0).

Using equation (5) to expand this ratio in powers of the
cell aspect ratio, r , around r = 1, and assuming that the cell
spreads isotropically, we find the following expression for the
area variation of the cell with the matrix rigidity:

(uc − u0)/(−u0) = Em

Em + E ′
c

+ O(r − 1)2, (7)

where E ′
c = Ec(1 + αv)(1 + νm)/(1 − νc), with νc and νm, the

Poisson ratios of the cell and matrix respectively. In 3D we find
a similar expansion for the relative volume change of the cell
in powers of the cell aspect ratio. In this case, the second term
in the expansion scales as (r − 1)3/2. In addition, the effective
Young’s modulus of the cell is given by: E ′

c = Ec(1 +αv)(1 +
νm)/(1 − 2νc). In the incompressible limit, νc → 1/2, E ′

c
diverges and consequently no volume change is possible in the
cell. Equation (7) shows that the cell area is rather insensitive
to the cell shape; the next higher order term in the above
expansion is quadratic in the deviation of r from unity. It is
known in continuum mechanics [26, 39] that for Cm = Cc and
for an isotropic dilatational (eigen)strain, u0

i j ∼ δi j , the strain
inside the inclusion is independent of the inclusion shape. The
inset of figure 2 shows the effect of cell shape on the area.
For an equal Poisson ratio of the cell and the matrix, in all
these limits, Em → 0, Em → Ec and Em → ∞ the cell
shape has zero effect. In addition, we note that the variation
of the cell area as a function of the matrix rigidity depends
on the polarizability parameters, particularly on αv (the other
factor, αs enters via the r -dependent terms). This reflects the
effect of the polarization of the cellular forces on the cell area.
Inspection of the parameter E ′

c shows that the polarizability
of the cell causes it to appear effectively more rigid with a
Young’s modulus that scales as ∼(1 + αv)Ec. Below, we
discuss the polarization response and the polarizability factors
in more detail.

Finally, equation (7) predicts a very simple functional
dependence of the area (or volume) dependence on the

Figure 2. Modulation of the cell spreading area with matrix rigidity.
The main panel shows a quantitative fit of the model equation (7) to
our experimentally measured values for human mesenchymal stem
cells; the fit was obtained with the value E ′

c = 11.5 kPa and did not
include the point corresponding to Em = 34 kPa due to its large
error. The inset shows how the modulation of the cell area varies
with the cell shape and the rigidity fraction, Em/Ec. This plot is for
ηa = αv = αs = 0; cell and matrix Poisson ratios are νc = 0.3 and
νm = 0.45, respectively. For finite values of αv and αs the cell area
decreases. Finite values of spreading asymmetry, ηa (see equation (8)
below), have only a small effect on these results.

matrix rigidity. In the main panel of figure 2 we show a
quantitative fit of our model to the measured area changes of
human mesenchymal stem cells that were plated on substrates
of various rigidities. A similar functional form was used
empirically by Engler et al [3]. This good agreement of theory
and experiment supports our assumption that the modulation of
cell area with the matrix rigidity is indeed dictated by a simple
elastic balance of cell and matrix forces.

3.2. Stress-fiber polarization

Experiments show that the spontaneous, active spreading
of cells on flat, homogeneous, and isotropic substrates is
isotropic [14]. Even in this case, however, the elastic
stress in the cell (and the matrix) can be anisotropic if the
early-time shape of the cell on the surface is somewhat
anisotropic [20]. The symmetry and topography of the
native cellular environment, however, is also often strongly
anisotropic and rough on the scale of the cell size (�10 μm).
Thus, cell spreading may often be biased by the local
asymmetry of the environment. This is seen for example
in the anisotropic spreading of cells along collagen fibers, a
phenomenon known as contact guidance [21, 22]. A common
practice in cell adhesion research is the use of artificially
designed substrates to control the cell shape and spreading on
a surface [18, 23, 24]. Thus, the asymmetry of cell–matrix
interaction may arise from either an anisotropy of the initial
cell shape as treated in [20], or from anisotropic stresses due
to the anisotropy of cell spreading; as shown in figure 1, a
cell may start round but spread anisotropically (right panel)
due to anisotropy of the spreading forces, or it may possess
some early-time shape anisotropy, and spread isotropically (left
panel). In this paper we do not treat elastic anisotropy, but

5
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rather show how even in an isotropic medium, the symmetry
(or asymmetry) of cell spreading may govern the polarization
of stress-fibers in the cell; this is applicable for example, to
experiments where the distribution of adhesive ligands can be
varied to govern cell spreading, or where the cell type is such
that there is an intrinsic (e.g., genetically controlled) tendency
that determines whether the cell spreads either symmetrically
or asymmetrically in a given environment. We show below
that the cell shape, and the symmetry of cell spreading have
independent effects on the polarization of stress-fibers in the
cytoskeleton, and that the dependence on the rigidity of the
surroundings is qualitatively different.

To study the effect of cell spreading asymmetry on
the polarization of stress-fibers in the cell we assume for
simplicity, that the early-time stress imposed by the cell on its
surroundings, Ccu0

i j , is biased along one direction, say the z-
direction, we thus write:

Ccu0
i j = p0(δi j + ηaδi zδ j z). (8)

The first term 〈p0
i j〉 = p0δi j is the isotropic contribution due

to the early-time distribution of acto-myosin dipoles in the
cytoskeleton; the second term is an anisotropic contribution
arising due to an asymmetric spreading of the cell8. The
elastic field that governs the increase in the polarization of the
force dipoles from their initial value, 〈p0

i j〉 = p0δi j , to their
steady-state value, 〈pi j〉, is given by equation (5) (see also
equation (2)). This field includes the contribution of both terms
on the right hand side of equation (8) as well as the contribution
arising from the anisotropic polarization of the acto-myosin
forces in the cytoskeleton, 〈pa

i j〉; equations (5) and (6) thus
provide a self-consistent solution of the problem.

The early-time polarization of acto-myosin dipoles in
the cytoskeleton (that on longer times results in anisotropic
stress-fiber formation), is phenomenologically described by
the (fourth-rank) polarizability tensor, α, that couples the
change in the acto-myosin forces to the stress developed in
the cytoskeleton, 〈pa

i j〉 = αi jklσ
c
kl , as in equation (2). We

now examine the properties of the polarizability tensor and the
possible polarization mechanisms it reflects. The polarization
response begins when the cytoskeleton is still in an isotropic
gel state [20, 34, 35] and hence the polarizability tensor, α, can
be approximated by an isotropic tensor that is characterized by
two independent parameters [26], as follows:

αi jkl = 1

d
(αv − αs)δi jδkl + αs Ii jkl , (9)

where d = 2, 3 is the dimensionality, Ii jkl = (δikδ jl +
δilδ jk)/2 is the fourth-rank identity tensor, and δi j is the
Kronecker delta function. This form of α is characteristic
of fourth-rank isotropic tensors including the elastic moduli
tensor, C, of isotropic materials [26]. The two parameters
αv and αs reflect respectively, the mean response of the
dipoles to stresses resulting from pure volume (area in 2D)
and shear deformations. Equivalently, the polarizability tensor

8 An additional, isotropic term, ηsδi j , arising from cell spreading can be
included but this merely renormalizes the value of p0 and can be eliminated.

can be expressed in terms of the parallel and perpendicular
components αiiii = α‖ and αii j j = α⊥.

The diagonal components of the polarizability tensor,
αiiii = α‖, describe a parallel response in which an axial
stretch gives rise to the additional formation of stress-fibers
and the strengthening of focal adhesions in that direction;
conversely, a weakening of the force causes disassembly of
focal adhesions and stress-fibers in that direction. The off-
diagonal elements of the polarizability tensor, αii j j = α⊥,
describe the response in the perpendicular direction (that
occurs along with the parallel response), in which a given
stress or strain also affects the focal adhesions and stress-fibers
in the perpendicular direction. This may arise due to global
conservation constraints on the total dipolar force, for instance,
due to a limit in the total myosin or ATP content in the cell. In
that case, we would expect α‖ and α⊥ to have opposite signs
(see below). Such conservation constraints and the possibility
that this results in different polarization responses have thus
far not been studied experimentally but as shown theoretically
below, these have important implications on the polarization of
stress-fibers in the cell.

We therefore analyze two extreme limits of the
polarization mechanisms (and hence values of the components
of the polarization tensor) that we term, axially-induced
polarization and orientational polarization, in analogy to
the polarization of non-polar and polar molecules by
an electric field, respectively [36]. In the limit of
axially-induced polarization, stress-fibers and focal adhesions
assemble/disassemble in the direction of the local stress, with
no coupling between the different directions; this happens
when αii j j = α⊥ = 0 or equivalently when αs = αv =
αiiii = α‖, see equation (9). In the limit of purely orientational
polarization, the enhancement of force, due to formation
of additional acto-myosin dipoles in the stress direction is
compensated by a reduction of the force in the perpendicular
direction due to loss of an equivalent amount of such dipoles.
This describes a situation in which the early-time acto-myosin
dipoles in the cytoskeleton effectively ‘rotate’ in the direction
of the stress but their total number is conserved. This situation
occurs when α‖ = (1 − d)α⊥ or when the polarizability
parameter αv is zero; this is because a symmetric, hydrostatic
pressure (that controls the volume of the cell) can only cause a
symmetric increase (decrease) in the number or magnitude of
the dipoles (if αv �= 0) but cannot result in a net orientation
of the dipoles. This is similar to the Poisson effect of
isotropic materials. In the incompressible limit, where the
compressibility modulus drops to zero, 1/κ → 0, the volume
is conserved and thus a stretch in one direction results in an
equivalent narrowing in the perpendicular directions.

Figure 3 shows a calculation of the 2D, orientational order
parameter of the force dipoles S = 〈cos(2θ)〉 = 〈pzz − pxx 〉/p
as a function of the ratio of the Young’s modulus of the matrix,
Em, and the cell, Ec; where, θ is the angle between each stress-
fiber and the z-axis; and p = 〈pxx 〉 + 〈pzz〉. The two elements
of the dipole tensor are given by 〈pxx 〉 = p〈sin2 θ〉 and 〈pzz〉 =
p〈cos2 θ〉 [40]; these are proportional to the number of force
dipoles in the x and z direction, respectively. We plot S for
increasing values of the spreading asymmetry parameter, ηa ,
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Figure 3. Dependence of acto-myosin polarization on the spreading asymmetry ηa for two possible polarization mechanisms, shown for the
2D system; left and right panels are for the two limits of axially-induced and orientational polarization mechanisms, respectively. The upper
two panels show the 2D orientational order parameter, S as a function of Young’s moduli ratio, Em/Ec; plotted for various values of the
spreading asymmetry parameter, ηa . These plots show that as ηa increases, the qualitative shape of S(Em/Ec) changes; this change is more
prominent in the orientation mechanism but for large enough values of ηa the curves become non-monotonic also in the axially-induced
mechanism (not shown). The figure shows that the acto-myosin alignment is more highly developed for the orientational mechanism for the
same value of ηa . The bottom panels show the separate components of the dipole tensor 〈pxx 〉 (dashed), 〈pzz〉 (thin), and the trace,
p = 〈pxx 〉 + 〈pzz〉 (bold), for several choices of ηa = 0, 0.5, 1.0. Color coding is the same in all plots. Parameters used for this plot: cell
aspect ratio, r = 3; cell and matrix Poisson ratios, νc = 0.3 and νm = 0.45, respectively; here, αs = αv = 2 for the left panels, αs = 2 and
αv = 0 for the right panels.

and for the two limiting cases of the polarization mechanism
described above. The figure is plotted for an elliptical cell in
an infinite, homogeneous and isotropic 2D sheet. We note that
when a cell spreads anisotropically its aspect ratio changes.
However, the relevant shape that dictates the elastic field in
the cell, is the shape of the cell in its stretched configuration.
We thus choose r (=3 in the figure) to be the aspect ratio of
the cell in its maximally stretched configuration and before the
long range elastic stresses in the matrix have been established
or relaxed9. We set the long (short) axis of the cell to be parallel
to the z-axis (x-axis), and r = c/a is the ratio of the long to
short axis.

Figure 3 shows how the asymmetry of cell spreading, as
expressed via the parameter ηa , affects the dependence of the
orientational order parameter, S, on the matrix rigidity. When
the cell spreads isotropically, ηa = 0, the orientation of the
force dipoles in the cytoskeleton is solely a consequence of
the early-time shape of the cell (see figure 1 left panel). We
find that in this case, the orientational order parameter, S,
depends non-monotonically on the matrix rigidity. As shown
in [20], the explanation for this intriguing phenomenon is that
in both very rigid and very soft environments the elastic field
developed in the cell is isotropic and is independent of the

9 We note that this calculation overrides the dynamics of cell spreading and
the accompanying shape change with time. Rather, for any given cell shape,
and stress, Ccu0

i j , that would develop in an infinitely rigid matrix, we calculate
the corresponding elastic field that results in a compliant matrix with finite
rigidity; in principle, our calculation holds for any instant of cell adhesion but
this analysis goes beyond the scope of the present paper.

cell shape. In a very rigid environment the isotropic cellular
tractions 〈p0

i j〉 are opposed by isotropic, equal and opposite
forces in the surrounding matrix; thus no breaking of symmetry
occurs. In a very soft environment, the matrix resistance,
and hence the stress in the cell drops to very small values
in all directions; since the feedback depends on the stress in
the cell, no feedback occurs and the stress-fibers in the cell
are not polarized. In between these limits, the cellular forces
increase with different dependencies on the matrix rigidity.
Consequently, the order parameter shows a maximum for some
intermediate value of the matrix rigidity.

In contrast to the effects of cell shape, the anisotropy of
cell spreading (ηa > 0) introduces, an additional, asymmetric
contribution to the elastic stress. This axial force increases
monotonically with the matrix rigidity and its magnitude
depends on the extent of the asymmetric stretching (spreading)
of the cell as given by ηa . The reason for the monotonic
increase of the axial force with the matrix rigidity is that the
magnitude of the elastic stresses in the cell increases with
the matrix rigidity. As a result also the anisotropy of the
elastic stress in the cell increases with the matrix rigidity
and via the feedback effect on the acto-myosin anisotropy, so
does the stress-fiber polarity. This behavior may explain the
observation that cells often polarize even on rigid substrates
such as glass [18, 23, 41, 42]. In this case, it is the axial stretch
of the cell that results from its biased, asymmetric spreading
that ‘induces’ the formation of stress-fibers in that direction.

As noted above, the polarization of stress-fibers in the cell
depends on whether the dipoles merely orient themselves in

7



J. Phys.: Condens. Matter 22 (2010) 194110 A Zemel et al

response to the change in the local stress or whether they also
change in magnitude and number. Figure 3 compares the two
limiting cases of axially-induced (αv = αs = α‖, α⊥ = 0)
and orientational (αv = 0 or α‖ = (1 − d)α⊥) polarization,
as described above; where d = 2, 3 is the dimensionality.
We find that in the limit of the orientational polarization, the
stress-fiber alignment is much more sensitive to the stress-
asymmetry (non-zero value of ηa) induced by cell spreading.
The bottom two panels allow us to simultaneously track the
variation in the polarization along the x and z directions and
their sum as a function of the matrix rigidity. In the limiting
case of orientational polarization (right panel), the total force
is conserved. Polarization of the dipoles along the z-axis
results in an increase of 〈pzz〉 from its isotropic value p0 and
in an equivalent decrease in the force along the x-axis. For
sufficiently high values of ηa , and the Young’s moduli ratio,
Em/Ec, all dipoles orient parallel to the z-axis. We note that
the restriction that both 〈pxx 〉/p0 and 〈pzz〉/p0 are positive
quantities (since these are proportional to the number of acto-
myosin dipoles in the cell) sets a limit on the accuracy of
our linear model. We find that in the limit of orientational
polarization, αs is therefore constrained to values that obey,
αs < d/ηa . For sufficiently high values of the spreading
asymmetry, ηa , all the acto-myosin dipoles in the cell would
polarize along the z-axis. If αs were greater than d/ηa , this
would require the disassembly of dipoles along the x-direction
(and their reassembly along the z-direction). However,
due to the finite number of dipoles (and the conservation
requirement in the limit of orientational polarization), there
are no additional dipoles in the x-direction, and this process
cannot occur. For ηa → 0, the polarization saturates once all
the dipoles orient along the z-axis and therefore αs may assume
any value. In the axially-induced polarization limit we find no
such restriction since 〈pi j〉/p0 is always positive and increases
monotonically with Em; there is no limit on the number of
dipoles. In the limit of axially-induced polarization, there is
therefore no conservation-induced coupling between the z and
x directions; since we assume that the asymmetry is directed
along the z-axis (cf equation (8)), only the polarization along
the z-axis increases with ηa (as seen in the bottom-left panel
of figure 3). This figure also shows that the total polarization
〈pxx + pzz〉 increases with the matrix rigidity. Clearly, for
intermediate values of the polarizability parameters, αs and
αv , we find values for the polarization and its behavior as a
function of the matrix rigidity that are intermediate between
those shown on the left and right panels of figure 3.

Finally, we present an analytical argument that explains
the general behavior of the curves seen in figure 3. While the
exact expression for S is a complicated function of Em/Ec we
find simplified expressions in the limit of small aspect ratios,
r , and the spreading asymmetry factor, ηa . Expanding S in
powers of both ηa and r around ηa = 0 and r = 1 we find:

S = (r − 1)A + ηa B + ηa(r − 1)C + · · · , (10)

where A, B and C have the following dependence on the
ratio em = Em/Ec: A = a1em/[e2

m + a2em + a3], B =
[b1e2

m+b2em]/[e2
m+b3em +b3], and C = [c1e2

m +c2em]/[e3
m+

c3e2
m + c4em + c5];10 the parameters a1, a2 · · · are positive

functions of the two polarizability parameters, αs and αv , the
Poisson ratios of the cell and the matrix and the dimensionality
(see appendix B). The first term in equation (10) has a
Lorentzian-type of form. This term is the only one involved
in the polarization of the stress-fibers in cells that isotropically
spread (ηa = 0) on a substrate. The polarization in this case
is driven by the stress anisotropy that results from the early-
time shape asymmetry of the cell and by the feedback effect
described earlier. The stress-fibers polarize along the long axis
of the cell. Interestingly, the dependence of this polarization
on the matrix rigidity is non-monotonic (the function A has a
non-monotonic dependence on the scaled matrix rigidity, em),
attaining a maximal value when the cell and matrix rigidity are
comparable (em ≈ 1). The second term in equation (10) is the
leading term in the polarization that is due to the spreading
asymmetry (ηa not equal to zero). Unlike the previous
contribution, that results solely from the cell shape anisotropy,
this contribution (given by B above) increases monotonically
with the matrix rigidity up to a saturation value that is given by
αsηa/(d +dαv). This agrees with the curves shown in figure 3,
that demonstrate that the stress-fiber alignment is higher in the
limit of orientational polarization (αv = 0) compared with
the limit of axially-induced polarization (αs = αv). It is
also consistent with our previous theoretical prediction [20]
that the polarization of stress-fibers is more prominent in 2D
geometries. Finally, the third term in equation (10) (given
by C above) couples the effects of both the cell shape and
spreading asymmetry. This term, like the first one, varies non-
monotonically with the matrix rigidity.

In [20] we reported the experimentally measured non-
monotonic dependence of the stress-fiber order parameter, S,
on the matrix rigidity in adult mesenchymal stem cells that
were (sparsely) grown on substrates of varying rigidities and
sorted by their aspect ratio; we use this information here to
calculate the elements of the polarization tensor, 〈pxx 〉 and
〈pzz〉 and the trace, p = 〈pzz + pxx 〉 for the group of
cells whose aspect ratio is relatively small r = 1.5. We
choose this group since in this case we find most pronounced
differences between the two polarization elements 〈pxx 〉 and
〈pzz〉. Consistent with our model, the order parameter shows
a non-monotonic dependence on the matrix rigidity [20].
Figure 4 shows the results of our experimental measurement
of the total amount of myosin in stress-fibers in the cells;
the experimental procedures are described in detail in the
appendix. The fluorescence intensity corresponding to the
total myosin in stress-fibers is likely to scale with the average
dipole strength, p. To estimate the separate components, 〈pxx 〉
and 〈pzz〉 we used the fact that S ∼ 〈pzz − pxx 〉 and p =
〈pzz + pxx 〉. Our measurement of the total myosin incorporated
in acto-myosin stress-fibers in the cell as a function of matrix
rigidity suggests that the cell produces a stronger overall force
on the more rigid substrates. This is consistent with a recent
direct measurement of the force exerted by fibroblasts on a
pillared surface of varying rigidity [43]. This trend is consistent
with the behavior seen in the left panels of figure 3, that
correspond to the induced polarization limit.
10 In 3D the function C is a ratio of a 3-order polynomial to a 4-order
polynomial.
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Figure 4. Experimental measurement of the total amount of
stress-fibers in human mesenchymal stem cells as a function of the
substrate rigidity. The figure shows the total myosin content that
scales with the mean-dipole strength, p = 〈pxx + pzz〉, and the
corresponding elements, 〈pxx 〉 and 〈pzz〉, calculated from S and p,
see the text. Theory curves obtained from the expansions of S and p
(cf equation (10)) are shown to guide the eye (dashed curves).

4. Concluding remarks

Our results predict two fundamentally different mechanisms
for stress-fiber polarization in cells. One mechanism is
driven by the anisotropy of cell spreading (finite values of
ηa). Anisotropic cell spreading can occur due to an uneven
distribution of ligands on a surface, or due to a topographic
constraint such as the presence of a thick but long collagen
fiber in the extracellular matrix; this produces an axial stretch
of the cytoskeleton of the cell. In this paper we studied
the consequences of asymmetric stresses within the cell that
can arise from asymmetric cell spreading in an isotropic
elastic medium. Our calculations show that in this case,
the polarization of the stress-fibers along the stretch direction
increases monotonically with the matrix rigidity. This explains
the observation that cells, whose spreading is restricted to
being elongated (e.g., via the asymmetry of the adhesive
pattern on a substrate), show polarized stress-fibers even when
plated on rigid substrates such as glass [18, 42]. In contrast to
the monotonic dependence on rigidity predicted for anisotropic
spreading, our experiments [20] with human mesenchymal
stem cells, grown on flat, isotropic and homogeneous
substrates show that the polarization of stress-fibers, as well
as the level of cell elongation (aspect ratio) [6], depend non-
monotonically on the matrix rigidity. Our theory predicts that
a non-monotonic dependence of stress-fiber polarization on
the matrix rigidity is expected when a cell, whose early-time
shape is non-isotropic, spreads isotropically on the substrate
(ηa = 0). Such a pure shape effect is another cause
of stress-fiber polarization. However, unlike the previous
case, this shape-induced stress-fiber polarization diminishes
to zero in both very high and very low matrix rigidities
where the stress inside the cell becomes isotropic. Thus,
a maximum in the polarization anisotropy 〈pzz − pxx 〉 is
expected as a function of the matrix rigidity. These findings
suggest that the dependence of stress-fiber polarization on
the matrix rigidity may be governed by the symmetry of the
adhesive pattern on a substrate and/or its topography, and

can therefore be manipulated (in vitro) by various fabrication
technics [17, 18, 23, 24].

In addition, the distinction between stress-fiber polariza-
tion anisotropy determined by spreading anisotropy and by ini-
tial shape anisotropy, raises the possibility that different cell
types might be governed by different inherent mechanisms
of cell spreading. Consequently, even when plated on flat,
isotropic and homogeneous substrates, different cell types may
show either a maximum or monotonic behavior of their stress-
fiber polarization as the matrix rigidity is increased, depend-
ing on whether that particular cell type is governed by shape
anisotropy or spreading anisotropy. Engler et al [6] have shown
that while the level of stem cell elongation on a substrate de-
pends non-monotonically on the matrix rigidity, smooth mus-
cle cells do not show this dependence; these cells adopt elon-
gated morphologies (characteristic of muscle cells) even when
plated on glass surfaces. It is tempting to speculate that the
variability of stem cell shapes, internal structure and differen-
tiation in different mechanical environments depends on their
inherent tendency to spread isotropically in their environment;
perhaps this greater level of symmetry is important for pro-
viding these cells with the larger structural and developmental
variability they possess.
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Appendix A. Experimental methods

The cells used in this study were human mesenchymal
stem cells (hMSCs) from bone marrow obtained from Lonza
and cultured in standard tissue culture treated plastic flasks
(Corning). The MSC growth medium consisted of low glucose
DMEM (Invitrogen) with 10% fetal bovine serum (Sigma) and
1% penicillin/streptomycin (Invitrogen). In order to have only
isolated cells, 500 cells cm−2 were plated on collagen coated
PA gels.

After 24 h the cells were fixed using a 10% solution of
formaldehyde (Sigma) in PBS and subsequently permeabilized
with a 0.5% solution of Triton X 100 (Sigma) in PBS. To
obtain a clear outline of the cell, F-actin was visualized using
rhodamine-phalloidin (Fluka) and the nucleus was stained with
a Hoechst dye (#33342, Invitrogen) to ensure that only healthy
cells were recorded. Non-muscle myosin IIa was immuno-
stained with a primary antibody raised in rabbit (# M8064,
Sigma) followed by a fluorescent secondary IgG antibody
(#A-21206, Invitrogen). Fluorescence images were taken
with an inverted microscope (IX 71, Olympus) using a 20×
phase contrast objective and a 1.6× post-magnification lens.
Unbiased cell images were obtained by searching for single
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nuclei that looked healthy and had no close neighbors. The
cell spreading area was determined with NIH ImageJ [44].

As tunable elastic substrates, collagen-I (BD Biosciences)
coated polyacrylamide (PA) gels with a Young’s elastic
modulus Em of 1, 5, 11, 20, and 34 kPa were prepared as
reported elsewhere [6, 45, 46]. The elastic Young’s modulus
was verified for each batch of gels by force-indentation
measurements using a atomic force microscope (MFP-3D,
Asylum Research, Santa Barbara).

To determine the total myosin content in the stress-fibers,
fluorescence images were segmented using a simple fiber-
finding algorithm [20]. Raw images were first convolved with
a series of elongated Laplace of Gaussian filters with different
angular orientations. The resulting images were collapsed into
one by taking the maximum at each pixel over all the filtered
images as the intensity of a new ’maximum response image’.
The maximum response image is then thresholded using the
Otsu method [47] and used as a mask for the original image,
leaving only regions in the original that are judged to be fibers
by the algorithm. This procedure eliminates the contribution
of the surrounding background intensity and intensity due
to labeled cytosolic myosin that is not incorporated into
stress-fibers giving a better estimate for the force-generating
structures than using the total myosin fluorescence intensity of
the cell.

Appendix B. Order parameter expansion

In this section we detail the expressions for the elements in the
expansion of the order parameter in powers of r − 1 and ηa in
the 2D system.

S = (r − 1)A + ηa B + ηa(r − 1)C + · · · (B.1)

with

A = αsem

a1e2
m + a2em + a3

B = αs(e2
m + b1em)

b2e2
m + b3em + b4

C = αs(e2
m + c1em)

c2e3
m + c3e2

m + c4em + c5

(B.2)

a1 = 1 + νc

2

a2 = 4 + αs(1 − νc)(3 − νm) − 2νc(1 − νm)

2(1 − νc)

a3 = (1 + αs)(3 − νm)(1 + νm)

2(1 − νc)

b1 = (1 + αv)(1 + νm)

1 − νc

b2 = 2(1 + αv)

b3 = 2(1 + αv)[4 + αs(1 − νc)(3 − νm) − 2νc(1 − νm)]
1 − ν2

c

b4 = 2(1 + αv)(1 + αs)(3 − νm)(1 + νm)

1 − ν2
c

c1 = (1 + αv)(1 + νm)

1 − νc

c2 = (1 + αv)(1 + νc)

c3 = (1 + αv)[5 + αs(1 − νc)(3 − νm) + νm + νc(3νm − 1)]
1 − νc

c4 = (1+αv)(1+νm)[7+2αs(1−νc)(3−νm)−νm−νc(5−3νm)]
(1−νc)2

c5 = (1 + αs)(1 + αv)(3 − νm)(1 + νm)2

(1 − νc)2
.

(B.3)
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